Immunoprecipitation and mass spectrometry identify non-cell autonomous Otx2 homeoprotein in the granular and supragranular layers of mouse visual cortex [version 1; referees: 2 approved]

نویسندگان

  • Fred Gage
  • Paola Bovolenta
  • Namsuk Kim
  • Damarys Loew
  • Antonio Simeone
  • Ariel A. Di Nardo
  • Alain Prochiantz
چکیده

Plasticity in the visual cerebral cortex is regulated by the internalization of Otx2 homeoprotein into parvalbumin neurons in cortical layers II/III and IV. However the locus is not active in these neurons and the protein is imported from Otx2 external sources, including the choroid plexus. Because Otx1 and Otx2 may have redundant functions, we wanted to verify if part of the staining in parvalbumin neurons corresponds to Otx1 transported from cortical layer V neurons. It is demonstrated here that Otx staining in layer IV cells is maintained in -null mice. The immunoprecipitation of extracts from finely dissected Otx1 granular and supragranular cortex (layers I-IV) gave immunoblots with a band corresponding to Otx2 and not Otx1. Moreover, high-resolution mass spectrometry analysis after immunoprecipitation identifies two peptides within the Otx2 homeodomain. One of these peptides is specific for Otx2 and is not found in Otx1. These results unambiguously establish that the staining in parvalbumin neurons revealed with the anti-Otx2 antibodies used in our previous studies identifies non-cell autonomous Otx2. 1 2,3 4 4

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunoprecipitation and mass spectrometry identify non-cell autonomous Otx2 homeoprotein in the granular and supragranular layers of mouse visual cortex

Plasticity in the visual cerebral cortex is regulated by the internalization of Otx2 homeoprotein into parvalbumin neurons in cortical layers II/III and IV. However the Otx2 locus is not active in these neurons and the protein is imported from external sources, including the choroid plexus. Because Otx1 and Otx2 may have redundant functions, we wanted to verify if part of the staining in parval...

متن کامل

A Mouse Model for Conditional Secretion of Specific Single-Chain Antibodies Provides Genetic Evidence for Regulation of Cortical Plasticity by a Non-cell Autonomous Homeoprotein Transcription Factor.

During postnatal life the cerebral cortex passes through critical periods of plasticity allowing its physiological adaptation to the environment. In the visual cortex, critical period onset and closure are influenced by the non-cell autonomous activity of the Otx2 homeoprotein transcription factor, which regulates the maturation of parvalbumin-expressing inhibitory interneurons (PV cells). In a...

متن کامل

Experience-Dependent Transfer of Otx2 Homeoprotein into the Visual Cortex Activates Postnatal Plasticity

Neural circuits are shaped by experience in early postnatal life. Distinct GABAergic connections within visual cortex determine the timing of the critical period for rewiring ocular dominance to establish visual acuity. We find that maturation of the parvalbumin (PV)-cell network that controls plasticity onset is regulated by a selective re-expression of the embryonic Otx2 homeoprotein. Visual ...

متن کامل

Genome-Wide Target Analyses of Otx2 Homeoprotein in Postnatal Cortex

Juvenile brain has a unique time window, or critical period, in which neuronal circuits are remodeled by experience. Mounting evidence indicates the importance of neuronal circuit rewiring in various neurodevelopmental disorders of human cognition. We previously showed that Otx2 homeoprotein, essential for brain formation, is recaptured during postnatal maturation of parvalbumin-positive intern...

متن کامل

Homeoprotein signaling in development, health, and disease: a shaking of dogmas offers challenges and promises from bench to bed.

Homeoproteins constitute a major class of transcription factors active throughout development and in adulthood. Their membrane transduction properties were discovered over 20 years ago, opening an original field of research in the domain of vector peptides and signal transduction. In early development, homeoprotein transfer participates in tissue patterning, cell/axon guidance, and migration. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015